
Analysis of Unstructured Text

SSC Data Science and Analytics
Workshop

Nathan Taback

Statistical Sciences and Computer Science,
University of Toronto

June 4, 2020

1 / 66

Outline
R Libraries for Working with Text

Importing unstructured text into R: copy/paste, external API,
webscraping, R libraries

Regular expressions and text normalization (e.g., tokenization)

N-Grams

Word Vectors and Matricies

2 / 66

Introduction

3 / 66

Donald Trump's letter to the
Director General of the World
Health Organization, Dr. Tedros,
is an example of unstructured
data.

There are dates, numbers, and
text that does not have a pre-
defined data structure.

Example 1: Trump's Letter to
WHO

4 / 66

https://www.whitehouse.gov/wp-content/uploads/2020/05/Tedros-Letter.pdf

We defined a P value report as a

string starting with either “p,”

“P,” “p-value(s),” “P-value(s),” “P

value(s),” or “p value(s),”

followed by an equality or

inequality expression (any

combination of =, <, >, ≤, ≥, “less

than,” or “of <” and then by a

value, which could include also

exponential notation (for

example, 10-4, 10(-4), E-4, (-4),

or e-4).

Example 2: Analysis of p-values

p-values were extracted from papers using a regular expression

5 / 66

Programming Languages for
Working With Unstructured
Text
Two popular languages for computing with data are R and Python.

We chose R for this workshop, but we could have selected Python.

6 / 66

R Libraries for Working with Text
Some very useful R libraries for working with unstructured text that are
used in this workshop:

base

tidyverse

janitor

tidytext

rvest

RSelenium

7 / 66

Importing text into R

8 / 66

For one-time this can work well.

Copy/Paste

How many words in the tweet text?

tweet_txt <- "I’m starting the week with an
update on the Canada Emergency Commercial
Rent Assistance and the work we’re doing
to get you the support you need. Tune in
now for the latest:"

tweet_link <- "https://www.cpac.ca/en/programs/
tweet_replies <- 164
tweet_rt <- 116
tweet_likes <- 599
tweet_url <- "https://twitter.com/JustinTrudeau

9 / 66

library(tidyverse)

── Attaching packages ──────────────────────────── tidyverse 1.3.0 ──

✓ ggplot2 3.3.0 ✓ purrr 0.3.4
✓ tibble 3.0.1 ✓ dplyr 0.8.5
✓ tidyr 1.0.3 ✓ stringr 1.4.0
✓ readr 1.3.1 ✓ forcats 0.5.0

── Conflicts ─────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

10 / 66

Tokenization
library(tidytext)
a data frame (tibble) that separates the text into words and stores
the result in a tibble column called out
tibble(tweet_txt) %>% unnest_tokens(out, tweet_txt, token = "words")

A tibble: 32 x 1
out
<chr>
1 i’m
2 starting
3 the
4 week
5 with
6 an
7 update
8 on
9 the
10 canada
… with 22 more rows

count the number of words use summarise with n()

tibble(tweet_txt) %>%
 unnest_tokens(out, tweet_txt, token = "words") %>%
 summarise(Num_words = n())

A tibble: 1 x 1
Num_words
<int>
1 32

11 / 66

Brief tidyverse detour
A tibble is the tidyverse version of a data frame, and in most use-cases
the two can be used interchangeably.

The %>% is similar to function composition: is analagous
to x %>% h() %>% g() %>% f()

(f ∘ g ∘ h)(x)

12 / 66

Brief tidyverse detour
summarise(unnest_tokens(tibble(tweet_txt),
 out, tweet_txt,
 token = "words"), Num_words = n())

is the same as

tibble(tweet_txt) %>%
 unnest_tokens(out, tweet_txt, token = "words") %>%
 summarise(Num_words = n())

We could have done the same using base R functions:

length(unlist(strsplit(tweet_txt, split = " ")))

13 / 66

Brief tidyverse detour
In the "tidy tools manifesto" (see vignettes in tidyverse) Hadley
Wickham states tht there are four basic principles to a tidy API:

Reuse existing data structures.

Compose simple functions with the pipe %>%.

Embrace functional programming.

Design for humans.

14 / 66

Using an External API to Access Data
R has several libraries where the objective is to import data into R from
an external website such as twitter or PubMed.

15 / 66

rtweet

Twitter has an API that can be accessed via the R library rtweet.

library(rtweet)

 source("twitter_creds.R")

token <- create_token(
 app = "nlpandstats",
 consumer_key = api_key,
 consumer_secret = api_secret_key)

see rtweet article on tokens.

16 / 66

https://rtweet.info/articles/auth.html

read csv file
JTtw <- rtweet::read_twitter_csv("JT20tweets_may25.csv")

Count the number of words in each tweet.

index each tweet with rowid then count
rowids
rowid_to_column(JTtw) %>%
 unnest_tokens(out, text, token = "words") %>%
 count(rowid) %>% head()

A tibble: 6 x 2
rowid n
<int> <int>
1 1 42
2 2 47
3 3 30
4 4 42
5 5 38
6 6 44

17 / 66

index each tweet with rowid
then count rowids
text_counts <-
 rowid_to_column(JTtw) %>%
 unnest_tokens(out, text,
 token = "words") %>%
 count(rowid)

Plot the distribution of word counts in JT's tweets.

text_counts %>%
 ggplot(aes(n)) +
 geom_histogram(bins = 5,
 colour = "black",
 fill = "grey") +
 xlab("Number of Words") +
 ggtitle("Number of Words in 20 Trude
 theme_classic()

18 / 66

What about the relationship between retweet count and word count?

#merge original data frame to data
frame with counts by rowid
rowid_to_column(JTtw) %>%
 left_join(text_counts, by = "rowid")
 select(rowid, n, retweet_count) %>%
 ggplot(aes(n, log10(retweet_count)))
 geom_point() + xlab("Number of Words
 ggtitle("Retweet Count versus Number

19 / 66

Twitter suggests that hashtags use all caps.

JTtw$hashtags

[1] "PKDay" "PKDay" NA NA
[5] NA NA NA NA
[9] NA NA NA NA
[13] NA NA "COVID19" "COVID19"
[17] NA NA "GlobalGoalUnite" "GlobalGoalUnite"

check if hastags are all upper case then count the number
sum(toupper(JTtw$hashtags) == JTtw$hashtags, na.rm = TRUE)

[1] 2

length(JTtw$hashtags)

[1] 20

[1] 0.1

sum(toupper(JTtw$hashtags) == JTtw$hashtags, na.rm = TRUE)/length(JTtw$

20 / 66

https://business.twitter.com/en/blog/the-dos-and-donts-of-hashtags.html

R Libraries with Unstructured
Text
There are many R libraries with unstructured text available. A few
examples include: geniusr for song lyrics, and gutenbergr for lit.

21 / 66

https://ewenme.github.io/geniusr/articles/geniusr.html
https://github.com/ropensci/gutenbergr

gutenbergr

Project Gutenberg is a free library of mostly older literary works (e.g.,
Plato and Jane Austen), although there are several non-literary works.
There are over 60,000 books.

gutenbergr is a package to help download and process these works.

library(gutenbergr)
gutenberg_works(str_detect(author, "Einstein"))

A tibble: 2 x 8
gutenberg_id title author gutenberg_autho… language gutenberg_books… rights
<int> <chr> <chr> <int> <chr> <chr> <chr>
1 5001 Rela… Einst… 1630 en Physics Publi…
2 7333 Side… Einst… 1630 en <NA> Publi…
… with 1 more variable: has_text <lgl>

einstein_talk <- gutenberg_download(7333)

22 / 66

einstein_talk %>%
 unnest_tokens(out, text) %>%
 count(out) %>%
 top_n(20) %>%
 ggplot(aes(reorder(out,-n), n)) +
 geom_col() +
 xlab("word") + ylab("Frequency")

23 / 66

stop_words %>% head()

A tibble: 6 x 2
word lexicon
<chr> <chr>
1 a SMART
2 a's SMART
3 able SMART
4 about SMART
5 above SMART
6 according SMART

Let's remove stop words such as "the" and "it". stop_words is a
dataframe of stop words in tidytext.

einstein_talk %>%
 unnest_tokens(out, text) %>%
 anti_join(stop_words,
 by = c("out" = "word")) %>
 count(out) %>%
 top_n(20) %>%
 ggplot(aes(reorder(out,-n), n)) +
 geom_col() +
 xlab("word") + ylab("Frequency") +
 theme_classic() +
 theme(axis.text.x =
 element_text(angle = 45, vju

24 / 66

Web scraping

25 / 66

The Stanford Encyclopedia of Philosophy (SEP) is a "dynamic reference
work [that] maintains academic standards while evolving and adapting
in response to new research" on philosophical topics. "Entries should
focus on the philosophical issues and arguments rather than on
sociology and individuals, particularly in discussions of topics in
contemporary philosophy. In other words, entries should be "idea-
driven" rather than "person-driven".

Which philosophers appear most frequently in SEP entries?

A list of philosopehrs can be obtained by scraping a few Wikipedia
pages using rvest.

26 / 66

The basic idea is to inspect the page and figure out which part of the
page contains the information you want.

Start by inspecting the element of this Wikipedia page

27 / 66

https://en.wikipedia.org/wiki/List_of_philosophers_(A%E2%80%93C

The names are stored in an html unordered list as items . So,
extract these nodes using html_nodes() then extract the text using
html_text().

28 / 66

library(rvest)

read the webpage
ac_url <- "https://en.wikipedia.org/wiki/List_of_philosophers_(A%E2%80%93C)"
wiki_philnamesAC <- xml2::read_html(ac_url)

wiki_philnamesAC %>%
 html_nodes("div.mw-parser-output ul li") %>%
 html_text() %>%
 head()

[1] "Article" "Category"
[3] "Glossary" "Outline"
[5] "Portal" "Adi Shankara, circa. 7th Century"

Remove the the first 5 rows using slice(-(1:5)).
29 / 66

Write a function to do this for the four Wikipedia pages

getphilnames <- function(url, removerows){
 philnames <- xml2::read_html(url) %>%
 html_nodes("div.mw-parser-output ul li") %>%
 html_text() %>%
 tibble(names = .) %>% # rename the column name
 slice(removerows)
 return(philnames)
}

names_ac <- getphilnames("https://en.wikipedia.org/wiki/List_of_philosophers_(A%E2%80%93C)",
 -(1:5))
names_dh <- getphilnames("https://en.wikipedia.org/wiki/List_of_philosophers_(D%E2%80%93H)",
 -(1:5))
names_iq <- getphilnames("https://en.wikipedia.org/wiki/List_of_philosophers_(I%E2%80%93Q)",
 -(1:5))
names_rz <- getphilnames("https://en.wikipedia.org/wiki/List_of_philosophers_(R%E2%80%93Z)",
 -(1:5))
wiki_names <- rbind(names_ac, names_dh, names_iq, names_rz)
wiki_names %>% head()

A tibble: 6 x 1
names
<chr>
1 Adi Shankara, circa. 7th Century
2 Nicola Abbagnano, (1901–1990)[2]
3 Muhammad Abduh, (1849–1905)[4]
4 Peter Abelard, (1079–1142)[1][2][3][4][5]
5 Miguel Abensour, (1939–2017)
6 Abhinavagupta, (fl. c. 975–1025)[4]

30 / 66

We need to extract the names from each entry. This is the same as
removing all the text a�er the comma.

The regular expression ,.*$ matches all text a�er (and including) the
comma then we can remove is with str_remove() (str_remove() is
vectorized).

the regex ,.*$ matches , and any letter . until
the end $ of the string
str_remove() removes the matches

wiki_names <- str_remove(wiki_names$names, ",.*$")
wiki_names %>% head()

[1] "Adi Shankara" "Nicola Abbagnano" "Muhammad Abduh" "Peter Abelard"
[5] "Miguel Abensour" "Abhinavagupta"

31 / 66

We can use tools in the RSelenium library to automate (via programming)
web browsing. It is primarily used for testing webapps and webpages
across a range of browser/OS combinations.

To run the Selenium Server I'll run the Docker container

docker run -d -p 4445:4444 selenium/standalone-firefox:2.53.1

library(RSelenium)

connect to server
remDr <- remoteDriver(
 remoteServerAddr = "localhost",
 port = 4445L,
 browserName = "firefox"
)

connect to the server
remDr$open()

#Navigate to <https://plato.stanford.edu/index.html>
remDr$navigate("https://plato.stanford.edu/index.html")

find search button
webelem <-remDr$findElement(using = "id", value = "search-text")

input first philosophers name into search
webelem$sendKeysToElement(list(wiki_names[1]))

find the search button
button_element <- remDr$findElement(using = 'class', value = "icon-search")

click the search button
button_element$clickElement()

32 / 66

https://docs.ropensci.org/RSelenium/
https://www.docker.com/

There are 17 entries where Adi Shankara is found.

33 / 66

robots.txt and Web scraping
The robots.txt file for SEP https://plato.stanford.edu/robots.txt
disallows /search/.

This is usually disallowed to prevent web crawlers from linking to the
SEP search engine.

I contacted the editor of SEP and was given permission to include this
example as part of this workshop.

"... ethical questions surrounding web scraping, or the practice of large
scale data retrieval over the Internet, will require humanists to frame
their research to distinguish it from commercial and malicious
activities."(Michael Black, 2016)

34 / 66

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://plato.stanford.edu/robots.txt
https://en.wikipedia.org/wiki/Web_crawler
https://www.euppublishing.com/doi/full/10.3366/ijhac.2016.0162

How can we extract 17 from the webpage?

Let's inspect the element that corresponds to 17.

Find the element related to search_total then extract the text.

find element
out <- remDr$findElement(using = "class", value="search_total")
extract text
tot <- out$getElementText()
tot

[[1]]
[1] "1–10 of 17 documents found"

35 / 66

Now, use a regular expression to extract the number just before
documents.

extract the number of dicuments
str_extract(tot[[1]],"\\d+(?= documents)")

[1] "17"

show the match
str_view_all(tot[[1]],"\\d+(?= documents)")

1–10 of 17 documents found

36 / 66

Now create a function to do this so that we can interate. It's good
practice to add a delay using Sys.sleep() so that we don't stretch the
SEP server capacity.

getcount <- function(i){
 Sys.sleep(0.05)
 remDr$navigate("https://plato.stanford.edu/index.html")
 webelem <-remDr$findElement(using = "id", value = "search-text")
 webelem$sendKeysToElement(list(wiki_names[i]))
 button_element <- remDr$findElement(using = 'class', value = "icon-se
 button_element$clickElement()
 out <- remDr$findElement(using = "class", value="search_total")
 tot <- out$getElementText()
 str_view_all(tot[[1]],"\\d+(?= documents)")
 tot <- str_extract(tot[[1]],"\\d+(?= documents)")
 return(as.numeric(tot))
}

37 / 66

Let's look at the first 10 names
tidyverse approach
in base R could use
sapply(1:10, getcount, simplify = TR

counts <- 1:10 %>%
 map(getcount) %>%
 flatten_dbl()

tibble(names = wiki_names[1:10],
 counts) %>%
 drop_na() %>%
 ggplot(aes(reorder(names,counts),
 counts)) +
 geom_col() +
 coord_flip() + theme_classic() +
 ylab("Number of entries") +
 xlab("Philosopher")

38 / 66

How can we search for any of
these?

cat

cats

Cat

Cats

Regular Expressions
A formal language for specifying text strings.

39 / 66

Regular Expressions: Characters
In R \\ represents \

\w matches any word and \W matches any non-word characters such as .
So to use this as a regular expression

str_view_all("Do you agree that stats is popular?", "\\w")

Do you agree that stats is popular?

40 / 66

\d matches any digit,

\D matches any non-digit,

. matches every character except new line.

\s matches any whitespace

str_view_all("There are at least 200 people in this zoom!", "\\d")

There are at least 200 people in this zoom!

41 / 66

Regular Expressions:
Alternates (Disjunctions)
Letters inside square brackets [] or use pipe |.

tidyverse style
str_view_all(string = c("cat","Cat"), pattern = "[cC]") # match c or C

cat

Cat

42 / 66

Regular Expressions:
Alternates (Disjunctions)
Ranges [A-Z], [a-z], [0-9], [:digit:], [:alpha:]

cat

Cat 900

str_view(string = c("cat","Cat 900"), pattern = "[0-9]") # first match

43 / 66

Negations in disjunction [^A].

When ^ is first in [] it means negation. For example, [^xyz] means
neither x nor y nor z.

str_view_all(string = c("xenophobia causes problems"),
 pattern = "[^cxp]") # neither c nor x nor p

xenophobia causes problems

44 / 66

Regular Expressions: Anchors
^a matches a at the start of a string and a$ matches a at the end of a
string.

str <- c("xenophobia causes problems", "Xenophobia causes problems")
x at the beginning or s at the end of string
str_view_all(string = str,
 pattern = "^x|s$")

xenophobia causes problems

Xenophobia causes problems

45 / 66

Regular Expressions:
Quantifiers
a? matches exactly zero or one a

a* matches zero or more a

a+ matches one or more a

a{3} matches exactly 3 a's

str_view_all(string = c("colour","color","colouur"),
 pattern = "colou+r")

colour

color

colouur

46 / 66

Regular Expressions:
Groups/Precedence
How can I specify both puppy and puppies?

disjuction only applies to suffixes y and ies
str_view_all(string = c("puppy", "puppies"), pattern = "pupp(y|ies)")

puppy

puppies

47 / 66

Example from p-value paper

48 / 66

Let's look at extracting all the variations of p value from a few sentences
using the regular expression provided in the appendix of Chavalarias et
al. (2016).

Namely,

(\s|\()[Pp]{1}(\s|-)*(value|values)?(\s)

(\s|\() whitespace or (

[Pp]{1} Match either P or p exactly once

(\s|-)* whitespace or - zero or more times

(value|values)? zero or one times

(\s) whitespace

 "/(\s|\()[Pp]{1}(\s|-)*(value|values)?(\s)*([=<>≤≥]|less than|of<)+(\s

49 / 66

str <- c("The result was significant (p < ",
 "The result was significant P = ",
 "The result was not significant p-value(s) less than ",
 "The result was significant P-value(s) ≤ ",
 "The result was significant P value(s) < ",
 "The result was significant p value(s) < ")

ppat <- "(\\s|\\()[Pp]{1}(\\s|-)*(value|values)?(\\s)"
str_view_all(str, pattern = ppat)

The result was significant (p <

The result was significant P =

The result was not significant p-value(s) less than

The result was significant P-value(s) ≤

The result was significant P value(s) <

The result was significant p value(s) <

But this doesn't capture "p value(s)". Is there a mistake in the data
extraction?
What should be added to the regular expression?

50 / 66

ppat <- "(\\s|\\()[Pp]{1}(\\s|-)*(value|values|value\\(s\\))?(\\s)"
str_view_all(str, pattern = ppat)

The result was significant (p <

The result was significant P =

The result was not significant p-value(s) less than

The result was significant P-value(s) ≤

The result was significant P value(s) <

The result was significant p value(s) <

51 / 66

N-Grams
Models that assign probabilities to sequences of words are called
language models.

An n-gram is a sequence of n words.

A 1-gram or unigram is one word sequence.

A 2-gram or bigram is a two word sequence.

A 3-gram or trigram is a three word sequence

52 / 66

Suppose we want to compute the probability of a word given some
history ,

The sentence "He had successfully avoided meeting his landlady ..." is
at the beginning of Crime and Punishment by Fyodor Dostoevsky.

Let and
:

Estimate using the relative frequency of counts:

This could be estimated using counts from searching the web using,
say, Google.

But, new sentences are created all the time so it's di�icult to estimate.

W

H P(W |H)

h = ``He had successfully avoided meeting his''
w = ``landlady''

``He had successfully avoided meeting his landlady''

``He had successfully avoided meeting his''

53 / 66

If we want to know the joint probability of an entire sequence of words
like "He had successfully avoided meeting his" “out of all possible
sequences of six words, how many of them are, "He had successfully
avoided meeting his"?

The bigram model approximates this probability using the Markov
assumption.

How can this be computed?

P(landlady|He had successfully avoided meeting his)

P(X7 = ``landlady''|X1 = ``He",X2 = ``had",

X3 = ``successfully", … ,X6 = ``his")

P(X7 = ``landlady''|X1 = ``He",X2 = ``had",

X3 = ``successfully", … ,

X6 = ``his") ≈

P(X7 = ``landlady''|X6 = ``his")

54 / 66

 count the number of bigrams that are "his landlady"

 count the number of bigrams that have first word "his"

Compute the probability of the bigram "his landlady" in Crime and
Punishment.

crimeandpun <- gutenberg_download(gutenberg_id = 2554) %>%
 slice(-(1:108)) # remove preface, etc.

crimeandpun %>% unnest_ngrams(output = out, input = text, n = 2) %>%
 mutate(out = tolower(out),
 bigram_xy = str_detect(out, "his landlady"), # Boolean for his landlady
 bigram_x = str_detect(out, "^his")) %>% # Boolean for his ...
 filter(bigram_x == TRUE) %>%
 group_by(bigram_xy) %>%
 count() %>% # creates the variable n for each group
 ungroup() %>% # ungroup so we can sum n's in each group
 mutate(tot = sum(n), percent=round(n/tot,3))

A tibble: 2 x 4
bigram_xy n tot percent
<lgl> <int> <int> <dbl>
1 FALSE 2090 2100 0.995
2 TRUE 10 2100 0.005

Chis landlady =

Chis ... =

Chis landlady/Chis ...

55 / 66

Word Vectors and Matrices
Words that occur in similar contexts tend to have similar meanings. The
idea is that "a word is characterized by the company it keeps" (Firth,
1957).

For example, oculist and eye doctor tended to occur near words like eye
or examined.

This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis.

A computational model that deals with di�erent aspects of word
meaning is to define a word as a vector in dimensional space,
although the vector can be defined in di�erent ways.

N

56 / 66

How o�en do the the words (term), battle, good,
fool, and wit occur in a particular Shakespeare
play (document)?

out AsYouLikeIt HenryV JuliusCaesar Twel�hNight

battle 1 0 8 0

fool 36 0 1 58

good 115 91 71 80

wit 21 3 2 15

Term Document Matrix

library(janitor)

AsYouLikeIt <- gutenberg_download(1523) %>%
 add_column(book = "AsYouLikeIt") %>%
 slice(-c(1:40))
TwelfthNight <- gutenberg_download(1526) %>%
 add_column(book = "TwelfthNight") %>%
 slice(-c(1:31))
JuliusCaesar <- gutenberg_download(1785) %>%
 add_column(book = "JuliusCaesar") %>%
 slice(-c(1:291))
HenryV <- gutenberg_download(2253) %>%
 add_column(book = "HenryV") %>%
 slice(-c(1:94))

shakespeare_books <- rbind(AsYouLikeIt,TwelfthN

shakespeare_books %>%
 unnest_tokens(out, text) %>%
 mutate(out = tolower(out)) %>%
 filter(out == "battle"|out == "good" | out ==
 group_by(book, out) %>%
 tabyl(out, book) %>% knitr::kable() %>% kable

57 / 66

This is an example of a term-document matrix: each row represents a word in
the volcabulary and each column represents a document from some collection
of documents.

out AsYouLikeIt HenryV JuliusCaesar Twel�hNight

battle 1 0 8 0

fool 36 0 1 58

good 115 91 71 80

wit 21 3 2 15

The table above is a small selection from the larger term-document matrix.

A document is represented as a count vector. If is the size of the vocabulary
(e.g., all the words in a document) then each document is a point in
dimensional space.

|V |
|V |

58 / 66

TF-IDF
Simple frequency isn’t the best measure of association between words.

One problem is that raw frequency is very skewed and not very
discriminative.

The dimension for the word good is not very discriminative between
Shakespeare plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie
nearby cherry) are more important than words that only appear once or
twice. Yet words that are too frequent are unimportant. How can we
balance these two conflicting constraints?

59 / 66

Term Frequency
term frequency is the frequency of word in document . In the
tidytext package it's computed as:

 is the count of term in document .

 is the total number of terms in .

t d

ft,d/∑
t′∈d

ft′,d

ft,d t d

∑t′∈d ft′,d d

60 / 66

The Shakespeare example below assumes that each document only has
four words. So, if "As you like it" and "battle" then term
frequency is, 1/(1+36+115+21) = 0.0057803.

out AsYouLikeIt HenryV JuliusCaesar Twel�hNight

battle 1 0 8 0

fool 36 0 1 58

good 115 91 71 80

wit 21 3 2 15

d = t =

61 / 66

Inverse Document Frequency
Terms that are limited to a few documents are useful for discriminating
those documents from the rest of the collection.

Terms that occur frequently across the entire collection aren’t as
helpful.

Let be the number of documents in the collection, and
 be the number of documents containg the

term. Inverse document frequency is defined as:

ndocuments

ndocuments containing term

idf(term) = ln().
ndocuments

ndocuments containing term

62 / 66

tf-idf

 is a term and is a collection of documents.

tf-idf(t, d) = (ft,d/∑
t′∈d

ft′,d)

term frequency

× idf(t)

inverse document frequency

t d

63 / 66

book out n tf idf tf_idf

AsYouLikeIt battle 1 0.0057803 0.6931472 0.0040066

AsYouLikeIt fool 36 0.2080925 0.2876821 0.0598645

AsYouLikeIt good 115 0.6647399 0.0000000 0.0000000

AsYouLikeIt wit 21 0.1213873 0.0000000 0.0000000

HenryV good 91 0.9680851 0.0000000 0.0000000

HenryV wit 3 0.0319149 0.0000000 0.0000000

JuliusCaesar battle 8 0.0975610 0.6931472 0.0676241

JuliusCaesar fool 1 0.0121951 0.2876821 0.0035083

JuliusCaesar good 71 0.8658537 0.0000000 0.0000000

JuliusCaesar wit 2 0.0243902 0.0000000 0.0000000

Twel�hNight fool 58 0.3790850 0.2876821 0.1090559

Twel�hNight good 80 0.5228758 0.0000000 0.0000000

Twel�hNight wit 15 0.0980392 0.0000000 0.0000000

tf_idf <- shakespeare_books %>%
 unnest_tokens(out, text) %>%
 mutate(out = tolower(out)) %>%
 filter(out == "battle"|out == "good" | out == "fool"|out == "wit") %>
 group_by(book, out) %>%
 count() %>%
 bind_tf_idf(term = out, document = book, n = n)

tf_idf %>% knitr::kable() %>% kableExtra::kable_styling(font_size = 9)

64 / 66

library(gridExtra)

p1 <- tf_idf %>% ggplot(aes(out,tf)) +
 geom_col(fill= "grey", colour = "bla
 facet_wrap(~book, nrow = 4) + ggtitl

p2 <- tf_idf %>% ggplot(aes(out,tf_idf
 geom_col(fill= "grey", colour = "bla
 facet_wrap(~book, nrow = 4) + ggtitl

grid.arrange(p1,p2, ncol = 2)

65 / 66

Questions?

66 / 66

