Analysis of Unstructured Text

SSC Data Science and Analytics
Workshop

Nathan Taback

Statistical Sciences and Computer Science,
University of Toronto

June 4, 2020

Outline

R Libraries for Working with Text

Importing unstructured text into R: copy/paste, external API,
webscraping, R libraries

Regular expressions and text normalization (e.g., tokenization)
N-Grams

Word Vectors and Matricies

2 /66

Introduction

3/66

Example 1: Trump's Letter to
WHO

THE WHITE HOUSE
WASHINGTON

May 18, 2020

His Excellency

Dr. Tedros Adhanom Ghebreyesus
Director-General of the World Health Organization
Geneva, Switzerland

Dear Dr. Tedros:

On April 14, 2020, I suspended United States contributions to the World Health Organization
pending an investigation by my Administration of the organization’s failed response to the
‘COVID-19 outbreak. This review has confirmed many of the serious concerns I raised last
month and identified others that the World Health Organization should have addressed,
especially the World Health Organization’s alarming lack of independence from the People’s
Republic of China. Based on this review, we now know the following:

The World Health Organization consistently ignored credible reports of the virus
spreading in Wuhan in early December 2019 or even earlier, including reports from the
Lancet medical journal. The World Health O ization failed to ind dentl
investigate credible reports that conflicted directly with the Chinese government’s official
accounts, even those that came from sources within Wuhan itself.

By no later than December 30, 2019, the World Health Organization office in Beijing
knew that there was a “major public health” concern in Wuhan. Between December 26
and December 30, China’s media highlighted evidence of a new virus emerging from
‘Wuhan, based on patient data sent to multiple Chinese genomics companies.
Additionally, during this period, Dr. Zhang Jixian, a doctor from Hubei Provincial
Hospital of Integrated Chinese and Western Medicine, told China’s health authorities that
anew coronavirus was causing a novel disease that was, at the time, afflicting
approximately 180 patients.

Donald Trump's letter to the
Director General of the World
Health Organization, Dr. Tedros,
is an example of unstructured
data.

There are dates, numbers, and
text that does not have a pre-
defined data structure.

4/66

https://www.whitehouse.gov/wp-content/uploads/2020/05/Tedros-Letter.pdf

Example 2: Analysis of p-values

m Views 75,408 | Citations 131 | Altmetric 528 We deﬁned aP Value report as a
] . . . ”
PDF () (F) Morew () Cite (C) Permissions string starting with either “p,
4 » « ” » «
Original Investigation P”p value(s), P value(s), P
March 15, 2016 value(s),” or “p value(s),”

Evolution of Reporting P Values in
the Biomedical Literature, 1990-
2015

David Chavalarias, PhD'; Joshua David Wallach, BAZ; Alvin Ho Ting Li, BHSc3; John P.
A. loannidis, MD, psc

followed by an equality or
inequality expression (any
combination of =, <, >, <, >, “less

than,” or “of <” and then by a

» Author Affiliations | Article Information

JAMA, 2016;315(11):1141-1148. doi:10.1001/jama.2016.1952

value, which could include also
exponential notation (for
example, 10-4, 10(-4), E-4, (-4),

ore-4).

p-values were extracted from papers using a regular expression

5/66

Programming Languages for
Working With Unstructured
Text

= Two popular languages for computing with data are R and Python.

= We chose R for this workshop, but we could have selected Python.

6 /66

R Libraries for Working with Text

Some very useful R libraries for working with unstructured text that are
used in this workshop:

base
tidyverse
janitor
tidytext
rvest

RSelenium

7/66

Importing text into R

8 /66

Copy/Paste

m For one-time this can work well.

Justin Trudeau & @JustinTrudeau - 4h ~
I'm starting the week with an update on the Canada Emergency
Commercial Rent Assistance and the work we're doing to get you the
support you need. Tune in now for the latest:

cpcac

CPAC - For The Record

Watch CPAC's signature long-form coverage of the day's pressing
political events as they unfold.

& cpac.ca

QO 164 11 15 O s97

[=

How many words in the tweet text?

tweet_txt <- "I’m starting the week with an
update on the Canada Emergency Commercial
Rent Assistance and the work we’re doing

to get you the support you need. Tune 1in
now for the latest:"

tweet_link <- "https://www.cpac.ca/en/programs/
tweet_replies <- 164

tweet_rt <- 116

tweet_likes <- 599

tweet_url <- "https://twitter.com/JustinTrudeau

9/66

library(tidyverse)

— Attaching packages

v ggplot2 3.3.0 v opurrr 0.3.4

v tibble 3.0.1 v dplyr 0.8.5

v tidyr 1.0.3 v stringr 1.4.0

v readr 1.3.1 v forcats 0.5.0

— Conflicts

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

tidyverse 1.3.0 —

tidyverse_conflicts() —

10/ 66

Tokenization

library(tidytext)

a data frame (tibble) that separates the text into words and stores
the result in a tibble column called out

tibble (tweet_txt) %>% unnest_tokens(out, tweet_txt, token = "words")

A tibble: 32 x 1

out

<chr>
1 9’m

2 starting
3 the

4 week
5 with
6 an

7 update
8 on

9 the

10 canada
.. with 22 more rows

count the number of words use summarise with n()

tibble (tweet_txt) %>%
unnest_tokens(out, tweet_txt, token = "words") %>%
summarise (Num_words = n())

A tibble: 1 x 1
Num_words
#i <int>
1 32

11/66

Brief ti dyverse detour

= Atibbleis the tidyverse version of a data frame, and in most use-cases
the two can be used interchangeably.

= The %% is similar to function composition: (f o g o h)(z) is analagous
tox %% h() %% g() %% ()

12/ 66

Brief ti dyverse detour

summarise(unnest_tokens(tibble(tweet_txt),
out, tweet_txt,
token = "words"), Num_words = n())

is the same as

tibble(tweet_txt) %>%
unnest_tokens(out, tweet_txt, token = "words") %>%
summarise (Num_words = n())

We could have done the same using base r functions:

length(unlist(strsplit(tweet_txt, split =" ")))

13/ 66

Brief tidyverse detour

In the "tidy tools manifesto" (see vignettes in tidyverse) Hadley
Wickham states tht there are four basic principles to a tidy API:

Reuse existing data structures.
Compose simple functions with the pipe %>%.
Embrace functional programming.

Design for humans.

14 / 66

Using an External API to Access Data

R has several libraries where the objective is to import data into R from
an external website such as twitter or PubMed.

15/ 66

rtweet

Twitter has an API that can be accessed via the R library rtweet.

library(rtweet)
source("twitter_creds.R")

token <- create_token(
app = "nlpandstats",
consumer_key = api_key,
consumer_secret = api_secret_key)

see rtweet article on tokens.

16 /66

https://rtweet.info/articles/auth.html

read csv file
JTtw <- rtweet::read_twitter_csv("JT20tweets_may25.csv")

Count the number of words in each tweet.

index each tweet with rowid then count

rowids
rowid_to_column(JTtw) %>%
unnest_tokens(out, text, token = "words") %>%

count(rowid) %>% head()

A tibble: 6 x 2

H# rowid n
<int> <int>
1 1 42
2 2 47
3 3 30
##t 4 4 42
5 5 38
6 6 44

17 /66

Plot the distribution of word counts in JT's tweets.

index each tweet with rowid Number of Words in 20 Trudeau Tweets
then count rowids
text_counts <-
rowid_to_column(JTtw) %>%
unnest_tokens(out, text,
token = "words") %>%
count(rowid) &

text_counts %>%
ggplot(aes(n)) +
geom_histogram(bins = 5,
colour = "black",
fill = "grey") +
xlab("Number of Words") +
ggtitle("Number of Words 1in 20 Trude
theme_classic()

20 an 40 50
Mumber of Words

18 /66

What about the relationship between retweet count and word count?

#merge original data frame to data Retweet Count versus Number of Words in 20 Trudeau Tweets

frame with counts by rowid

rowid_to_column(JTtw) %>%
left_join(text_counts, by = "rowid") 25
select(rowid, n, retweet_count) %>%
ggplot(aes(n, loglO(retweet_count)))
geom_point() + xlab("Number of Words .
ggtitle("Retweet Count versus Number

b
o
-

log of retwe et count
-

Number of Words

19/66

Twitter suggests that hashtags use all caps.

JTtwShashtags

[1] "PKDay" "PKDay" NA NA

[5] NA NA NA NA

[9] NA NA NA NA

[13] NA NA "COVID19" "COVID19"

[17] NA NA "GlobalGoalUnite" "GlobalGoalUnite"

check 1f hastags are all upper case then count the number
sum(toupper (IJTtwShashtags) == JTtw$hashtags, na.rm = TRUE)

[1] 2

length(JTtwShashtags)

[1] 20

sum(toupper (IJTtwShashtags) == JTtw$hashtags, na.rm = TRUE)/length(JTtw:

[1] 0.1

20 /66

https://business.twitter.com/en/blog/the-dos-and-donts-of-hashtags.html

R Libraries with Unstructured
Text

There are many R libraries with unstructured text available. A few
examples include: geniusr for song lyrics, and gutenbergr for lit.

21/66

https://ewenme.github.io/geniusr/articles/geniusr.html
https://github.com/ropensci/gutenbergr

gutenbergr

Project Gutenberg is a free library of mostly older literary works (e.g.,
Plato and Jane Austen), although there are several non-literary works.
There are over 60,000 books.

gutenbergr IS @ package to help download and process these works.

library(gutenbergr)
gutenberg_works(str_detect(author, "Einstein"))

A tibble: 2 x 8

##t gutenberg_id title author gutenberg_autho.. language gutenberg_books..
#H <int> <chr> <chr> <int> <chr> <chr>

1 5001 Rela.. Einst.. 1630 en Physics

2 7333 Side.. Einst.. 1630 en <NA>

.. with 1 more variable: has_text <lgl>

einstein_talk <- gutenberg_download(7333)

rights
<chr>

Publi..
Publi..

22 /66

einstein_talk %>%
unnest_tokens(out, text) %>%
count(out) %>%
top_n(20) %>%
ggplot(aes(reorder(out,-n), n)) +
geom_col() +
xlab("word") + ylab("Frequency")

Frequency

600 -
400 -
20:‘ II

the of te in s & that and & which be # we this by nol elthgeomempecry on

word

23 /66

Let's remove stop words such as "the" and "it". stop_words is a
dataframe of stop words in tidytext.

stop_words %>% head()

A tibble: 6 x 2 &
word lexicon

#i# <chr> <chr>

a SMART

#i a's SMART

#it able SMART 4
about SMART
above SMART
according SMART

=

O U bh WNKH
Frequency
=

[
-1

einstein_talk %>%
unnest_tokens(out, text) %>%
anti_join(stop_words,
by = c("out" = "word")) %>
count(out) %>%
top_n(20) %>% .

ggplot(aes(reorder(out,-n), n)) +

+ " N & °§L > ® &
fizgzﬁ\?\llﬁé") + ylab("Frequency") + “\\‘S&"ﬁ‘\ﬁ & "‘ﬁﬁ‘f ‘*'gpnfb & *“ﬁo‘ﬁﬁﬁ &iﬂﬁ"s\h <o ﬁi"@@
theme_classic() + word
theme (axis.text.x =

element_text(angle = 45, vju

24/ 66

Web scraping

25 /66

= The Stanford Encyclopedia of Philosophy (SEP) is a "dynamic reference
work [that] maintains academic standards while evolving and adapting
in response to new research" on philosophical topics. "Entries should
focus on the philosophical issues and arguments rather than on
sociology and individuals, particularly in discussions of topics in
contemporary philosophy. In other words, entries should be "idea-
driven" rather than "person-driven".

= Which philosophers appear most frequently in SEP entries?

A list of philosopehrs can be obtained by scraping a few Wikipedia
pages using rvest.

26 /66

The basic idea is to inspect the page and figure out which part of the
page contains the information you want.

Start by inspecting the element of this Wikipedia page

] =html class="client-js ve-not-available" lang="en" dir="1ltr"=
Article Talk Read Edit View history | Search Wikiped Q | |y pead.. -/head-
v=body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-@ ns-subject mw-editable p
List_pof_philosophers_A-C rootpage-List_of_philesephers_A-C skin-vector action-view''=
List Of philosophers (A_C) =div id="mw-page-base" class="noprint"=</div=
=div id="mw-head-base" class="noprint"==/div=
w<=div id="content" class="mw-body" role="main"=
From Wikipedia, the free encyclopedia 2a id="top"==/a=
b <div id="siteNotice" class="mw-body-content"=.</div>
=div class="mw-indicators mw-body-content"=

Topics =/div=
ABCDEFGHIJK b <hl id="firstHeading" class="firstHeading" lang="en''=.=/hl=
LMNOPQRSTU v <div id="bodyContent"” class="mw-body-centent"=
Ll t f hll h r (A) =div id="siteSub" class="noprint"=From Wikipedia, the free encyclopedia=/div=
sto p Osop ers _C VWXYZ =div id="contentSub"=</div=
an alphabetical index Philosophers <div id="jump-to-nav"></div=
. X =a class="mw-jump—Llink" href="#mw—head"=Jump to navigation=/a=
for articles about Ph'bsophy ABCDEFGHIJK <a class="mw-jump-link" href="#p-search"=Jump to search</a=
LMNOPQRSTU v=div id="mw-content-text" lang="en" dir="1tr" class="mw-content-ltr'=
VWXYZ wv=div class="mw-parser-output'=

=div class="shortdescription nomebile noexcerpt noprint searchaux" style="dis
none''>Wikipedia list article</div>
r=table id="mp-topbanner” style="width:1@®%;background:#FFD6%9;margin-top:@em;
border:1px solid #FFD&93;"=.</table=
b =table id="mp-strapline" style="width:100%;background:none;margin:—08.8em @ -8

Article - Category - Glossary * Qutline - Portal

Philosophers (and others important in the history of philosophy),
listed alphabetically:

Note: This list has a minimal criterion for inclusion and the

relevance to philosophy of some individuals on the list is <a href="/wiki/Adi Shankara" title="Adi Shankara'=Adi Shankara</a=
" " i . T7th Century"

disputed. » carea
el =f1li=

A li 39261x22

« /Adi'Shankara, circa. 7th Century
« Nicola Abbagnano, (1901-1920)
« Muhammad Abduh, (1849-1905)1!
« Peter Abelard, (1079-1142)[I2IBI41E]
« Miguel Abensour, (1939-2017)
i « Abhinavagupta, (1. c. 975-1025)!]

html body #content #bodyContent #mw-content-text divmw-parser-output ul Il a

Styles EventListeners DOM Breakpoints Properties Accessibility 27 / 66

https://en.wikipedia.org/wiki/List_of_philosophers_(A%E2%80%93C

The names are stored in an html unordered list <u1> as items <ti>. So,
extract these nodes using html_nodes () then extract the text using
html_text().

] =html class="client-js ve-not-available" lang="en" dir="1ltr"=
Article Talk Read Edit View history |Search Wikiped Q » <head=..</head>
v=body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-@ ns-subject mw-editable p
List_pof_philosophers_A-C rootpage-List_of_philesephers_A-C skin-vector action-view''=
List Of philosophers (A_C) =div id="mw-page-base" class="noprint"=</div=
=div id="mw-head-base" class="noprint"==/div=
w<=div id="content" class="mw-body" role="main"=
From Wikipedia, the free encyclopedia 2a id="top"==/a=
b <div id="siteNotice" class="mw-body-content":
=div class="mw-indicators mw-body-content"=

Topics =/div=
ABCDEFGHIJK b <hl id="firstHeading" class="firstHeading" lang="en''=.=/hl=
LMNOPQRSTU v <div id="bodyContent"” class="mw-body-centent"=
Ll t f hll h r (A) =div id="siteSub" class="noprint"=From Wikipedia, the free encyclopedia=/div=
sto p Osop ers _C VWXYZ =div id="contentSub"=</div=
an alphabetical index Philosophers <div id="jump-to-nav"></div=
. X =a class="mw-jump—Llink" href="#mw—head"=Jump to navigation=/a=
for articles about Ph'bsophy ABCDEFGHIJK <a class="mw-jump-link" href="#p-search"=Jump to search</a=
LMNOPQRSTU v=div id="mw-content-text" lang="en" dir="1tr" class="mw-content-ltr'=
VWXYZ wv=div class="mw-parser-output'=

=div class="shortdescription nomebile noexcerpt noprint searchaux" style="dis
none''>Wikipedia list article</div>
r=table id="mp-topbanner” style="width:1@®%;background:#FFD6%9;margin-top:@em;
border:1px solid #FFD&93;"=.</table=
b =table id="mp-strapline" style="width:100%;background:none;margin:—08.8em @ -8
8;"=.</table=

Article - Category - Glossary * Qutline - Portal

Philosophers (and others important in the history of philosophy),
listed alphabetically:

p'.a-
b edl=n=/dl=

Note: This list has a minimal criterion for inclusion and the

relevance to philosophy of some individuals on the list is <a href="/wiki/Adi Shankara" title="Adi Shankara"-Adi Shankara</a-
disputed. ", circa. 7th Century"

=/ li=

A li 39261x22

« /Adi'Shankara, circa. 7th Century
« Nicola Abbagnano, (1901-1920)
« Muhammad Abduh, (1849-1905)1!
« Peter Abelard, (1079-1142)[I2IBI41E]
« Miguel Abensour, (1939-2017)
i « Abhinavagupta, (1. c. 975-1025)!]

html body #content #bodyContent #mw-content-text divmw-parser-output ul Il a

Styles Event Listeners DOM Breakpoints Properties Accessibility

28 / 66

<html class="client—js ve-not-available” lang="en" dir="1ltr"=
» <head>_</head>
¥ <body class="mediawiki ltr sitedir-1tr mw—hide—empty—elt ns—@ ns—subject mw—editable p
List_of_philosophers_A—C rootpage-List_of_philosophers_A—C skin-vector action-view's
iv id="mw-page-base" class="neprint'=</div=
mw—head-base' class='"noprint’

Article Talk Read Edit View history | Search Wikiped Q

List of philosophers (A—C)

) id="content” class="mw-body" role="main"=
From the free ency Sd="tophs</as
» <div id="siteNotice class='mw-body—content’
<div class="mw—indicators mw—body-content'=
Topics </div=
ABCDEFGHIJK <hl id="firstHeading" class="firstHeading" lang="en
w<div id="bodyContent" class="mw—body—content'=
LiSt Of phiIOSOpherS (A_C) LMNOPQRSTU =div id="siteSub' class="noprint'=From Wikipedia, the free encyclopedia</div=
VWXYZ =diwv iwe
an alphabetical index Philosophers odiv_ i ump—to—nav®></div>
. . <a class="mw—jump-link" href=
for articles about Philosophy ABCDEFGHIJK <a class="mw—jump—link" href="#
LMNOPQRSTU w <div id="mw-content—text' lang dir="1tr" class="mw—content—1ltr"'=
VWXYZ v <div class='mw-parser—output’s
<div class="shortdescription nomobile noexcerpt noprint searchaux” style='dis
Article - Category - Glossary - Outline » Portal none”=Wikipedia list article</div-

» <table id="mp-topbanner” style="width:180%;background:#FFD699;margin—top:@em;
border:lpx solid #FFDE98;">.</table=

able id="mp-strapline” style="width:180%;background:none;margin:—@.8em & —@

Philosophers (and others important in the history of philosophy),
listed alphabetically:

Note: This list has a criterion for inclusion and the p—
relevance to phifosophy of some individuals on the list is Adi Shankara</a=>
disputed. ", circa. 7th Century"

A N 39261x22

- Adi Shankara, circa. 7th Century
Nicola Abbagnano, (1901—-1980)
Muhammad Abduh, (1849—1905)!
Peter Abelard, (1079—1142) I21EI415]
Miguel Abensour, (1939-2017)

p « Abhinavagupta, {il. c. 975-1025)!%

.

html body #content #bodyContent #mw-content-text divmw-parseroutput ul li a

.

Styles Event Listeners DOM Breakpoints Properties Accessibility

library(rvest)

read the webpage

ac_url <- "https://en.wikipedia.org/wiki/List_of_philosophers_(A%E2%80%93C)"
wiki_philnamesAC <- xml2::read_html(ac_url)

wiki_philnamesAC %>%
html_nodes("div.mw-parser-output ul 1i") %>%
html_text() %>%
head ()

[1] "Article" "Category"
[3] "Glossary" "Outline"
[5] "Portal" "Adi Shankara, circa. 7th Century"

Remove the the first 5 rows using stice(-(1:5)).
29/ 66

Write a function to do this for the four Wikipedia pages

getphilnames <- function(url, removerows){
philnames <- xml2::read_html(url) %>%

nodes ("div.mw-parser-output ul 1i") %>%
html_text() %>%
tibble(names = .) %>% # rename the column name
slice(removerows)

return(philnames)

html_

}

names_ac <- getphilnames("https://en.wikipedia.
-(1:5))

names_dh <- getphilnames("https://en.wikipedia.
-(1:5))

names_iq <- getphilnames("https://en.wikipedia.
-(1:5))

names_rz <- getphilnames("https://en.wikipedia.
-(1:5))

org/wiki/List_of_philosophers_(A%E2%80%93C)",
org/wiki/List_of_philosophers_(D%E2%80%93H)",
org/wiki/List_of_philosophers_(I%E2%80%93Q)",

org/wiki/List_of_philosophers_(R%E2%80%93Z)",

wiki_names <- rbind(names_ac, names_dh, names_iq, names_rz)
wiki_names %>% head()

A tibble: 6 x 1

##
##
##
##
##
##
##
##

o uh WN

names
<chr>

Adi Shankara, circa. 7th Century

Nicola Abbagnano, (1901-1990)([2]

Muhammad Abduh, (1849-1905)[4]

Peter Abelard, (1079-1142)[1]1[2]1[3][4][5]
Miguel Abensour, (1939-2017)
Abhinavagupta, (fl. c. 975-1025)[4]

30/66

= We need to extract the names from each entry. This is the same as
removing all the text after the comma.

= The regular expression ,.xs matches all text after (and including) the
comma then we can remove is with str_remove() (str_remove() is
vectorized).

the regex ,.*S matches , and any letter . until

the end $ of the string
str_remove() removes the matches

wiki_names <- str_remove(wiki_names$names, ",.*x$")
wiki_names %>% head()

[1] "Adi Shankara" "Nicola Abbagnano" "Muhammad Abduh" "Peter Abelard"
[5] "Miguel Abensour" "Abhinavagupta"

31/66

We can use tools in the rselenium library to automate (via programming)
web browsing. It is primarily used for testing webapps and webpages
across a range of browser/OS combinations.

To run the Selenium Server I'll run the Docker container

docker run -d -p 4445:4444 selenium/standalone-firefox:2.53.1

library(RSelenium)

connect to server
remDr <- remoteDriver (

remoteServerAddr = "localhost",
port = 4445L,
browserName = "firefox"

)

connect to the server
remDrSopen ()

#Navigate to <https://plato.stanford.edu/index.html>
remDr$navigate("https://plato.stanford.edu/index.html")

find search button
webelem <-remDr$findElement(using = "id", value = "search-text")

input first philosophers name into search
webelem$sendKeysToElement (list(wiki_names[1]))

find the search button
button_element <- remDrs$findElement(using = 'class', value = "dicon-search")

click the search button
button_elementS$SclickElement ()

32 /66

https://docs.ropensci.org/RSelenium/
https://www.docker.com/

There are 17 entries where Adi Shankara is found.

C? Stanford Encyclopedia of Philosophy

& Browse @ About @ Support SEP

Search

Adi Shankara

1-10 of 17 documents found

Philosophy of Religion
difficult to classify Nagarjuna {150-250 CE) or Adi Shankara (788—-820 CE) as exclusively

philosophical or...

Charles Taliaferro
https://plato.stanford.edu/entries/philosophy-religion/

Concepts of God

33/66

robots.txt and Web scraping

The robots.txt file for SEP https://plato.stanford.edu/robots.txt
disallows /search/.

This is usually disallowed to prevent web crawlers from linking to the
SEP search engine.

| contacted the editor of SEP and was given permission to include this
example as part of this workshop.

"... ethical questions surrounding web scraping, or the practice of large
scale data retrieval over the Internet, will require humanists to frame
their research to distinguish it from commercial and malicious
activities."(Michael Black, 2016)

34 /66

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://plato.stanford.edu/robots.txt
https://en.wikipedia.org/wiki/Web_crawler
https://www.euppublishing.com/doi/full/10.3366/ijhac.2016.0162

How can we extract 17 from the webpage?

Let's inspect the element that corresponds to 17.

£ =0 Elements Gonsole

Sources Network Performance » a1 = H x
- enair) =
- - 71> <html endif]—
Stanford Encyclopedia of Philosophy

al> <html
9]> <html 3 endif]—->
1IEls >

Menu

endif]——=

.</head

MOTE: The nojs class is removed from the page
drives the display when there is no javascript. —

Search

if javascript is enabled. Otherwise, it

Adi Shankara

<!— End header wrapper ——>

http://localhest:8983/solr/current/select?wt=json&debugQuery=truethl=truethl. tag.pre=
boShl tag. post
1-10 of R </b=6h1. snippets=36hL, ficlds=contentstitlesdelTypesedismaxtt ic=0. 16hL. useFastvectartig
Look Up “17* AP er it TueER BoundarycannaronrekTtaratarEnl be type HORDENT be hars
. e e 2o0R a1 e Shankar s o T toanr s 100 Con et t 1Yo L0ah to i Field (12_m
Philosc copy plement), 10,1000)
difficult t Search Google for “17% CE) or Adi Shankara (788-820 CE) as
k ? v <div id="content”
exclusive Print. DO NOT MODIFY THIS LINE AND ABOVE-—=
Charles T,
o T .
Speech >
- </h1=
Concef Services . +<div class-"searchpage">
without parts or attributes. . .one without a second.” [traditional ion]. b<div id="search" :
second half of the

class="'search-suggest’-.</div=
Madhva Vedanta, Aldershot, England: Ashgate. Shankara, first half
of 8th century, The Vedanta Sutras,

v <div class-"search_resu
- class='"search tntal">:l —1@ of 17 documents found</div=
traditonal attribution], second half of 8th century, end search_total ——>
Shankara's Crest Jewel of Di i Swami

class="result_listing"=_</div=
. . end result_listing ——>
William Wainwright class="result_listing"=.
end result_listing —
class="result_listing'.
end result_listing ——>
class="result_listing’
end result_listing ——>
class="result_listing">_</div
htmi body.homepage div#container div#content

https://plato.stanford.edu/entries/concepts-god/

Ibn ‘Arabf

scholars have compared him to Eastern thinkers like Shankara. Zhuangzi, and Dégen

(Shah-Kazemi 2006, Izutsu...R., 2006, Paths to Transcendence: According to Shankara,
Thin Avahi and Meicter Folhart Rlanmineton.

_—

divsearchpage div.search_resuits div.search_total

Find the element related to search_total then extract the text.

find element

out <- remDr$findElement(using
extract text

tot <- outSgetElementText()
tot

"class", value="search_total")

[[1]]
[1] "1-10 of 17 documents found"

35/66

Now, use a regular expression to extract the number just before
documents.

extract the number of dicuments
str_extract(tot[[1]],"\\d+(?= documents)")

[1] "17"

show the match
str_view_all(tot[[1]],"\\d+(?= documents)")

1-10 of 17 documents found

36 /66

Now create a function to do this so that we can interate. It's good
practice to add a delay using sys.sleep() so that we don't stretch the
SEP server capacity.

getcount <- function(i){
Sys.sleep(0.05)
remDr$navigate("https://plato.stanford.edu/index.html")

webelem <-remDr$findElement(using = "4id", value = '"search-text")
webelem$sendKeysToElement (list(wiki_names[i]))

button_element <- remDr$findElement(using = 'class', value = "dicon-s:
button_elementSclickElement ()

out <- remDr$findElement(using = "class", value="search_total")

tot <- out$getElementText()
str_view_all(tot[[1]],"\\d+(?= documents)")

tot <- str_extract(tot[[1]],"\\d+(?= documents)")
return(as.numeric(tot))

37 /66

Let's look at the first 10 names

tidyverse approach Robert Adams
1n base R could use
sapply(1:10, getcount, simplify = Tk Peter Abelard

counts <- 1:10 %>%
map (getcount) 9%>%
flatten_db1l()

Judah ben lsaac Abravans

|a@ac ben Judah Abravans

tibble(names = wiki_names[1:10],

counts) %>% _‘g Marilyn Mctord Adams
drop_na() %>% g
ggplot(aes(reorder (names,counts), A Migusl Abensour
counts)) +
geom_col () + Muhammed Abdun
coord_flip() + theme_classic() +
ylab("Number of entries") + Nicala Abbagnans
xlab ("Philosopher'")
Adi Shankara
Aphinavagupta

GO0 800
Mumber of antries

o
w
o
g
b

38 /66

Regular Expressions

A formal language for specifying text strings.

How can we search for any of
these?

cat
cats
Cat
Cats

39/66

Regular Expressions: Characters

= |n R\\ represents\

= \wmatches any word and \w matches any non-word characters such as .
So to use this as a regular expression

str_view_all("Do you agree that stats 1is popular?", "\\w")

Do you agree that stats is popular?

40/ 66

\d matches any digit,
\D matches any non-digit,
. matches every character except new line.

\s matches any whitespace

str_view_all("There are at least 200 people 1in this zoom!", "\\d")

There are at least 200 people in this zoom!

41 /66

Regular Expressions:
Alternates (Disjunctions)

m |ettersinside square brackets [] or use pipe |.

tidyverse style
str_view_all(string = c("cat","Cat"), pattern = "[cC]") # match c or C

cat

Cat

42 [66

Regular Expressions:
Alternates (Disjunctions)

u Ranges [A-Z], [a-z], [0-9], [:digit:], [:alpha:]
str_view(string = c("cat","Cat 900"), pattern = "[0-9]") # first match

cat

Cat 900

43 / 66

= Negations in disjunction [»A].

m When »isfirstin [] it means negation. For example, [*xyz] means
neither x nory nor z.

str_view_all(string = c("xenophobia causes problems"),
pattern = "[Acxp]") # neither ¢ nor x nor p

xenophobia causes problems

44 |/ 66

Regular Expressions: Anchors

= 73 matches a at the start of a string and as matches a at the end of a
string.

str <- c("xenophobia causes problems", "Xenophobia causes problems")
x at the beginning or s at the end of string
str_view_all(string = str,

pattern = "Ax|s$")

xenophobia causes problems

Xenophobia causes problems

45/ 66

Regular Expressions:
Quantifiers

a? matches exactly zero or one a
ax matches zero or more a
a+ matches one or more a

a{3} matches exactly 3 a's

str_view_all(string = c("colour","color","colouur"),
pattern = "colou+r")

colour
color

colouur

46/ 66

Regular Expressions:
Groups/Precedence

= How can | specify both puppy and puppies?

disjuction only applies to suffixes y and ies
str_view_all(string = c("puppy", "puppies"), pattern = "pupp(y|ies)")

puppy
puppies

47 | 66

Example from p-value paper

M Views 75,408 = Citations 131 | Altmetric 528

PDF () (f) Morew (&) Cite (©) Permissions

Original Investigation
March 15, 2016

Evolution of Reporting P Values in
the Biomedical Literature, 1990-
2015

David Chavalarias, PhD'; Joshua David Wallach, BAZ; Alvin Ho Ting Li, BHSc3; John P.
A. loannidis, MD, Dsc?

2 Author Affiliations | Article Information

JAMA. 2016;315(11):1141-1148. doi:10.1001/jama.2016.1952

48 / 66

Let's look at extracting all the variations of p value from a few sentences
using the regular expression provided in the appendix of Chavalarias et
al. (2016).

"/(\s|\ () [Pp1{1} (\s|-)*(value|values)? (\s)*([=<><>]|less than|of<)+(\:
Namely,
(\s|\(O) [PpI1{1} (\s|-)*(value|values)?(\s)
(\s|\ () whitespace or (
[Pp1{1} Match either p or p exactly once
(\s|-)* whitespace or - zero or more times

(value|values)? Z€ro orone times

(\s) whitespace

49 / 66

str <= c("The

"The
"The
"The
"The
"The

result
result
result
result
result
result

was significant (p < ",
was significant P = ",

was not significant p-value(s) less than ",

was significant P-value(s) < ",
was significant P value(s) "
was significant p value(s) < ")

N

ppat <= "(\\s|[\\ () [Pp]{1}(\\s|-)*(value|values)?(\\s)"
str_view_all(str, pattern = ppat)

The
The
The
The
The
The

But this doesn't capture "p value(s)". Is there a mistake in the data

result
result
result
result
result

result

was

was

was

was

was

was

extraction?

What should be added to the regular expression?

significant (p <

significant P =

not significant p-value(s) less than

significant P-value(s)
significant P value(s)

significant p value(s)

<

<

<

50/ 66

ppat <= "(\\s|\\(O) [Pp]{1}(\\s|-)*(value|values|value\\(s\\))?(\\s)"

str_view_all(str, pattern = ppat)

The
The
The
The
The
The

result
result
result
result
result

result

was

was

was

was

was

was

significant (p <

significant P =

not significant p-value(s) less than

significant P-value(s)
significant P value(s)

significant p value(s)

51/66

N-Grams

Models that assign probabilities to sequences of words are called
language models.

An n-gram is a sequence of n words.
A 1-gram or unigram is one word sequence.
A 2-gram or bigram is a two word sequence.

A 3-gram or trigram is a three word sequence

52 /66

Suppose we want to compute the probability of a word W given some
history H, P(W |H)

The sentence "He had successfully avoided meeting his landlady ..." is
at the beginning of Crime and Punishment by Fyodor Dostoevsky.

Let h = ~ " He had successfully avoided meeting his’’ and
w = " landlady”’:

Estimate using the relative frequency of counts:

" He had successfully avoided meeting his landlady”

* " He had successfully avoided meeting his’’

This could be estimated using counts from searching the web using,
say, Google.

But, new sentences are created all the time so it's difficult to estimate.

53/66

= |f we want to know the joint probability of an entire sequence of words
like "He had successfully avoided meeting his" “out of all possible
sequences of six words, how many of them are, "He had successfully
avoided meeting his"?

P(landlady|He had successfully avoided meeting his)

P(X7; = " 'landlady”|X; = " "He”, X5 = * "had”,
X3 = "“successfully”, ..., Xg = " "his”)

The bigram model approximates this probability using the Markov
assumption.

P(X; = ""landlady”|X; = " "He”, Xy = " “had”,
X3 = " “successfully”, ...,
X¢ = ""his”) =
P(X7; = ""landlady”|X¢ = " "his”)

How can this be computed?

54 /66

" Chislandlady = count the number of bigrams that are "his landlady"
s (Chis ... = count the number of bigrams that have first word "his"

* Chis landlady/ Chis ...

Compute the probability of the bigram "his landlady" in Crime and
Punishment.

crimeandpun <- gutenberg_download(gutenberg_-id = 2554) %>%
slice(-(1:108)) # remove preface, etc.

crimeandpun %>% unnest_ngrams(output = out, input = text, n = 2) %>%

mutate(out = tolower (out),
bigram_xy = str_detect(out, "his landlady"), # Boolean for his landlady
bigram_x = str_detect(out, "Ahis")) %>% # Boolean for his ...

filter(bigram_x == TRUE) %>%

group_by(bigram_xy) %>%

count() %>% # creates the variable n for each group

ungroup() %>% # ungroup so we can sum n's in each group

mutate(tot = sum(n), percent=round(n/tot,3))

A tibble: 2 x 4

bigram_xy n tot percent
<lgl> <int> <int> <dbl>
1 FALSE 2090 2100 0.995
2 TRUE 10 2100 0.005

55/ 66

Word Vectors and Matrices

Words that occur in similar contexts tend to have similar meanings. The
idea is that "a word is characterized by the company it keeps" (Firth,
1957).

For example, oculist and eye doctortended to occur near words like eye
or examined.

This link between similarity in how words are distributed and similarity
in what they mean is called the distributional hypothesis.

A computational model that deals with different aspects of word
meaning is to define a word as a vector in N dimensional space,
although the vector can be defined in different ways.

56 / 66

Term Document Matrix

How often do the the words (term), battle, good,
fool, and wit occur in a particular Shakespeare

play (document)?

library(janitor)

AsYoulLikeIt <- gutenberg_download(1523) %>%
add_column(book = "AsYoulLikeIt") %>%
slice(-c(1:40))

TwelfthNight <- gutenberg_download(1526) %>%
add_column(book = "TwelfthNight") %>%
slice(-c(1:31))

JuliusCaesar <- gutenberg_download(1785) %>%
add_column(book = "JuliusCaesar") %>%
slice(-c(1:291))

HenryV <- gutenberg_download(2253) %>%
add_column(book = "HenryV") %>%
slice(-c(1:94))

shakespeare_books <- rbind(AsYouLikeIt,TwelfthN

shakespeare_books %>%
unnest_tokens(out, text) %>%
mutate(out = tolower (out)) %>%

filter (out == "battle"|out == "good" | out ==

group_by (book, out) %>%

tabyl(out, book) %>% knitr::kable() %>% kable

out AsYoulikelt HenryV JuliusCaesar TwelfthNight

battle 1 0 8 0
fool 36 0 1 58
good 115 91 71 80
wit 21 3 2 15

57 /66

= This is an example of a term-document matrix: each row represents a word in
the volcabulary and each column represents a document from some collection
of documents.

out AsYoulLikelt HenryV JuliusCaesar TwelfthNight

battle 1 0 8 0
fool 36 0 1 58
good 115 91 71 80
wit 21 3 2 15

= The table above is a small selection from the larger term-document matrix.

= Adocumentis represented as a count vector. If |V is the size of the vocabulary
(e.g., all the words in a document) then each document is a pointin | V|
dimensional space.

58 /66

TF-IDF

Simple frequency isn’t the best measure of association between words.

One problem is that raw frequency is very skewed and not very
discriminative.

The dimension for the word good is not very discriminative between
Shakespeare plays; good is simply a frequent word and has roughly
equivalent high frequencies in each of the plays.

It’s a bit of a paradox. Words that occur nearby frequently (maybe pie
nearby cherry) are more important than words that only appear once or
twice. Yet words that are too frequent are unimportant. How can we
balance these two conflicting constraints?

59 /66

Term Frequency

= term frequency is the frequency of word ¢ in document d. In the
tidytext package it's computed as:

= f;qisthe countof termtin documentd.

" > g fraisthe total number of terms in d.

60/ 66

The Shakespeare example below assumes that each document only has
four words. So, if d = "As you like it" and ¢ = "battle" then term
frequencyis, 1/(1+36+115+21) = 0.0057803.

out AsYoulLikelt HenryV JuliusCaesar TwelfthNight

battle 1 0 8 0
fool 36 0 1 58
good 115 91 71 80
wit 21 3 2 15

61 /66

Inverse Document Frequency

= Terms that are limited to a few documents are useful for discriminating
those documents from the rest of the collection.

= Terms that occur frequently across the entire collection aren’t as
helpful.

® et Ngocuments P€ the number of documents in the collection, and
Ndocuments containing term D€ the number of documents containg the
term. Inverse document frequency is defined as:

id f (term) _ ln(Ndocuments) .

Ndocuments containing term

62 /66

tf-idf

N——

N v inverse document frequency

tf-idf(¢, d) = (ft,d/ > ftf,d) X idf(t)

term frequency

tisatermanddis a collection of documents.

63 /66

tf_idf <- shakespeare_books %>%
unnest_tokens(out, text) %>%
mutate(out = tolower (out)) %>%
filter (out == "battle"|out == "good" | out =
group_by (book, out) %>%
count() %>%
bind_tf_idf(term = out, document = book, n = n)

"fool"|out == "wit") %

tf_idf %>% knitr::kable() %>% kableExtra::kable_styling(font_size = 9)

book out n tf idf tf_idf
AsYoulLikelt battle 1 0.0057803 0.6931472 0.0040066
AsYoulLikelt fool 36 0.2080925 0.2876821 0.0598645

AsYoulLikelt good 115 0.6647399 0.0000000 0.0000000

AsYoulLikelt wit 21 0.1213873 0.0000000 0.0000000
Henryv good 91 0.9680851 0.0000000 0.0000000
HenryV wit 3 0.0319149 0.0000000 0.0000000

JuliusCaesar battle 8 0.0975610 0.6931472 0.0676241
JuliusCaesar fool 1 0.0121951 0.2876821 0.0035083
JuliusCaesar good 71 0.8658537 0.0000000 0.0000000
JuliusCaesar wit 2 0.0243902 0.0000000 0.0000000
TwelfthNight fool 58 0.3790850 0.2876821 0.1090559
TwelfthNight good 80 0.5228758 0.0000000 0.0000000

TwelfthNight wit 15 0.09803%92 0.0000000 0.0000000

64 / 66

library(gridExtra)

pl <- tf_idf %>% ggplot(aes(out,tf)) +
geom_col(fill= "grey", colour = "ble
facet_wrap(~book, nrow = 4) + ggtitl

p2 <- tf_idf %>% ggplot(aes(out,tf_idf
geom_col(fill= "grey", colour = "ble
facet_wrap(~book, nrow = 4) + ggtitl

grid.arrange(pl,p2, ncol = 2)

Term Frequency

AsYoulikelt

[1

'

JulivsCaesar

TwelfthMight

I

0.25 0.50
Term Frequency

0.75

TF-1IDF
AsYoulkelt
w |
wos |
- [
e]
Hennyf
|
wos |
fool
battie
JuliwsCaesar
i
wos |
faol
battie
TwelfthMight
wi |
st |
-
batiie:
.00 003 0.06 0.09
TF-IDF

65 /66

Questions?

66 / 66

